首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   793篇
  免费   160篇
  国内免费   197篇
  2023年   31篇
  2022年   17篇
  2021年   50篇
  2020年   55篇
  2019年   67篇
  2018年   54篇
  2017年   60篇
  2016年   55篇
  2015年   51篇
  2014年   50篇
  2013年   67篇
  2012年   39篇
  2011年   39篇
  2010年   38篇
  2009年   54篇
  2008年   40篇
  2007年   53篇
  2006年   47篇
  2005年   26篇
  2004年   28篇
  2003年   34篇
  2002年   33篇
  2001年   31篇
  2000年   34篇
  1999年   20篇
  1998年   20篇
  1997年   11篇
  1996年   9篇
  1995年   7篇
  1994年   6篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   6篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
排序方式: 共有1150条查询结果,搜索用时 78 毫秒
21.
利用LI-8100土壤CO2排放通量全自动测量系统,于2010年1~4月测定了艾比湖地区不同植被类型样地的土壤呼吸速率,结合环境因子、冻土厚度及室内土壤理化性质分析,探讨了温带干旱区季节性冻土厚度变化对土壤呼吸的影响。结果表明:土壤温度在冻结期是影响冻土厚度的最主要环境因子,而解冻期冻土厚度变化与土壤温度等环境因子关系不显著(P>0.05);冻土厚度在不同时期影响土壤呼吸速率的程度不同,冻结期两者呈显著正相关(R2=0.782,P<0.05),解冻初期两者呈弱相关(P>0.05);土壤呼吸速率在土壤冻结期与解冻初期不存在显著差异(P>0.05),但在解冻完全期则表现出明显的增加趋势(差值为0.14~0.37μmol?m-2?s-1),表明冻土融化会明显地增加土壤碳排放,从而增加大气中的CO2。研究结果初步阐明了艾比湖地区季节性冻土厚度变化对土壤呼吸的影响,为揭示全球变暖背景下冻土退化过程中的碳释放机理提供理论基础。  相似文献   
22.
Xin Wang  Anthony D. Fox  Peihao Cong  Lei Cao 《Ibis》2013,155(3):576-592
More than 90% of the Lesser White‐fronted Geese Anser erythropus in the Eastern Palearctic flyway population winter at East Dongting Lake, China. To explain this restricted distribution and to understand better the winter feeding ecology and habitat requirements of this poorly known species, we assessed their food availability, diet and energy budgets at this site through two winters. Lesser White‐fronted Geese maintained a positive energy budget when feeding on above‐ground green production of Eleocharis and Alopecurus in recessional grasslands in autumn and spring to accumulate fat stores. Such food was severely depleted by late November and showed no growth in mid‐winter. Geese fed on more extensive old‐growth Carex sedge meadows in mid‐winter where they were in energy deficit and depleted endogenous fat stores. Geese failed to accumulate autumn fat stores in one year when high water levels prevented the Geese from using recessional grassland feeding areas. Fat stores remained lower throughout that winter and Geese left for breeding areas later in spring than in the previous year, perhaps reflecting the need to gain threshold fat stores for migration. Sedge meadows are widespread at other Yangtze River floodplain wetlands, but recessional grasslands are rare and perhaps restricted to parts of East Dongting Lake, which would explain the highly localized distribution of Lesser White‐fronted Geese in China and their heavy use of these habitats at this site. Sympathetic management of water tables is essential to maintain the recessional grasslands in the best condition for Geese. Regular depletion of fat stores whilst grazing sedge meadows in mid‐winter also underlines the need to protect the species from unnecessary anthropogenic disturbances that enhance energy expenditure. The specialized diet of the Lesser White‐fronted Goose may explain its highly restricted winter distribution and global rarity.  相似文献   
23.
Background: Understanding the role of livestock grazing on plant diversity can be improved by an accurate measurement of diversity at all hierarchical scales due to the changeability of diversity components in space.

Aims: We evaluated the effects of grazing on plant species diversity at different scales of all common and rare species in two regions that have different climatic conditions (arid vs. semi-arid).

Methods: In each region, we collected abundant data of plant species from a nested sampling design that consisted of local (80 plots) and regional (16 sites) scales. We partitioned total species diversity (γ) into within plots (αl), among plots (βl) and among sites (β2) using the additive partitioning.

Results: Diversity among sites contributed the most to total diversity for all and rare plant species in both regions. In addition, α1 and β1 diversities in ungrazed areas were greater than those in grazed areas for all and common species in both climates.

Conclusion: Abandonment of grazing after 10 years resulted in significant regeneration of common species at the local scale, with no change in rare species. We conclude that low grazing intensity is likely to be an important tool for conservation of plant diversity in which all scales should be considered.  相似文献   
24.
Abstract

The present study examined a sub-Mediterranean pastoral system in the central Apennines (Italy) with a long history of grazing, where winter cold stress is alternated with summer drought stress. The research goals were to ascertain whether different floristic structures correspond to different stress conditions (xeric and semimesic), and whether peculiar functional plant traits (such as avoidance and tolerance mechanisms) respond to stress/disturbance intensities, and understand how vegetation reacts to changeable livestock pressure (through floristic and plant trait variations). Cluster analysis indicated that separate communities develop under different stress intensities. Other analyses highlighted how avoidance strategies predominate within the pastoral system. Observations of grazed and ungrazed patches conducted in 10-m transects revealed spiny cushion formation in semimesic grassland, where a brief period of overgrazing occurs in late summer, causing variations in plant community structure. All these results confirm the importance of historical grazing and current land use, showing how small disturbances and stress variations cause ecosystem responses. Best practices for management were identified. In xeric conditions, it is advisable that the intensity of disturbance be lessened, while in semimesic grassland overgrazing should be forbidden during the dry period, because it could facilitate the development of spiny patches, and subsequent spread of Brachypodium rupestre.  相似文献   
25.
Effects of grazing on grassland soil carbon: a global review   总被引:2,自引:0,他引:2  
Soils of grasslands represent a large potential reservoir for storing CO2, but this potential likely depends on how grasslands are managed for large mammal grazing. Previous studies found both strong positive and negative grazing effects on soil organic carbon (SOC) but explanations for this variation are poorly developed. Expanding on previous reviews, we performed a multifactorial meta‐analysis of grazer effects on SOC density on 47 independent experimental contrasts from 17 studies. We explicitly tested hypotheses that grazer effects would shift from negative to positive with decreasing precipitation, increasing fineness of soil texture, transition from dominant grass species with C3 to C4 photosynthesis, and decreasing grazing intensity, after controlling for study duration and sampling depth. The six variables of soil texture, precipitation, grass type, grazing intensity, study duration, and sampling depth explained 85% of a large variation (±150 g m?2 yr?1) in grazing effects, and the best model included significant interactions between precipitation and soil texture (P = 0.002), grass type, and grazing intensity (P = 0.012), and study duration and soil sampling depth (P = 0.020). Specifically, an increase in mean annual precipitation of 600 mm resulted in a 24% decrease in grazer effect size on finer textured soils, while on sandy soils the same increase in precipitation produced a 22% increase in grazer effect on SOC. Increasing grazing intensity increased SOC by 6–7% on C4‐dominated and C4–C3 mixed grasslands, but decreased SOC by an average 18% in C3‐dominated grasslands. We discovered these patterns despite a lack of studies in natural, wildlife‐dominated ecosystems, and tropical grasslands. Our results, which suggest a future focus on why C3 vs. C4‐dominated grasslands differ so strongly in their response of SOC to grazing, show that grazer effects on SOC are highly context‐specific and imply that grazers in different regions might be managed differently to help mitigate greenhouse gas emissions.  相似文献   
26.
27.
Understanding how soil respiration (Rs) and its source components respond to climate warming is crucial to improve model prediction of climate‐carbon (C) feedback. We conducted a manipulation experiment by warming and clipping in a prairie dominated by invasive winter annual Bromus japonicas in Southern Great Plains, USA. Infrared radiators were used to simulate climate warming by 3 °C and clipping was used to mimic yearly hay mowing. Heterotrophic respiration (Rh) was measured inside deep collars (70 cm deep) that excluded root growth, while total soil respiration (Rs) was measured inside surface collars (2–3 cm deep). Autotrophic respiration (Ra) was calculated by subtracting Rh from Rs. During 3 years of experiment from January 2010 to December 2012, warming had no significant effect on Rs. The neutral response of Rs to warming was due to compensatory effects of warming on Rh and Ra. Warming significantly (P < 0.05) stimulated Rh but decreased Ra. Clipping only marginally (P < 0.1) increased Ra in 2010 but had no effect on Rh. There were no significant interactive effects of warming and clipping on Rs or its components. Warming stimulated annual Rh by 22.0%, but decreased annual Ra by 29.0% across the 3 years. The decreased Ra was primarily associated with the warming‐induced decline of the winter annual productivity. Across the 3 years, warming increased Rh/Rs by 29.1% but clipping did not affect Rh/Rs. Our study highlights that climate warming may have contrasting effects on Rh and Ra in association with responses of plant productivity to warming.  相似文献   
28.
Climate models forecast increasing climatic variation and more extreme events, which could increase the variability in animal demographic rates. More variable demographic rates generally lead to lower population growth and can be detrimental to wild populations, especially if the particular demographic rates affected are those to which population growth is most sensitive. We investigated the population dynamics of a metapopulation of 25 colonies of a semi-arid bird species, the sociable weaver Philetairus socius, and how it was influenced by seasonal weather during 1993–2014. We constructed an integrated population model which estimated population sizes similar to observed population counts, and allowed us to estimate annual fecundity and recruitment. Variance in fecundity contributed most to variance in population growth, which showed no trend over time. No weather variables explained overall demographic variation at the population level. However, a separate analysis of the largest colony showed a clear decline with a high extinction probability (0.05 to 0.33) within 5 years after the study period. In this colony, juvenile survival was lower when summers were hot, and adult survival was lower when winters were cold. Rainfall was also negatively correlated with adult survival. These weather effects could be due to increased physiological demands of thermoregulation and rainfall-induced breeding activity. Our results suggest that the dynamics of the population on the whole are buffered against current weather variation, as individual colonies apparently react in different ways. However, if more and increasingly extreme weather events synchronize colony dynamics, they are likely to have negative effects.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号